A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type
نویسندگان
چکیده
We consider the quasilinear equation $\Delta _p u +K(|x|)u^q=0$, and present proof of local existence positive radial solutions near $0$ under suitable conditions on $K$. Moreover, we provide a priori estimates $\infty $ when $r^{-\ell }K(r)$ for $\ell \ge -p$ is bounded $.
منابع مشابه
Positive decreasing solutions of quasilinear dynamic equations
We consider a quasilinear dynamic equation reducing to a half-linear equation, an Emden–Fowler equation or a Sturm–Liouville equation under some conditions. Any nontrivial solution of the quasilinear dynamic equation is eventually monotone. In other words, it can be either positive decreasing (negative increasing) or positive increasing (negative decreasing). In particular, we investigate the a...
متن کاملPositive Solutions of Quasilinear Elliptic Equations
(1.2) { −∆pu = λa(x)|u|p−2u, u ∈ D 0 (Ω), has the least eigenvalue λ1 > 0 with a positive eigenfunction e1 and λ1 is the only eigenvalue having this property (cf. Proposition 3.1). This gives us a possibility to study the existence of an unbounded branch of positive solutions bifurcating from (λ1, 0). When Ω is bounded, the result is well-known, we refer to the survey article of Amann [2] and t...
متن کاملExistence and Nonexistence of Positive Radial Solutions for Quasilinear Systems
The paper deals with the existence and nonexistence of positive radial solutions for the weakly coupled quasilinear system div (
متن کاملA Priori Estimates of Positive Solutions for Sublinear Elliptic Equations
In this paper, a priori estimates of positive solutions for sublinear elliptic equations are given in terms of thicknesses of domains. To this end, a supersolution is constructed by a composite function of a solution to an ordinary differential equation and a distance function. The results work efficiently in the case where the domain is an exterior or an interior of a convex set.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archivum mathematicum
سال: 2023
ISSN: ['0044-8753', '1212-5059']
DOI: https://doi.org/10.5817/am2023-2-155